top of page

One ticket for the Enterprise please! Has China successfully created an sustainable EM Drive?


Shannon Greaves

Space is awesome. So awesome that it has had the global powers stuck in a space race even before America took that one giant leap for mankind. Everyone is eager to explore new planets, solar systems and travel faster than light (FTL) with their very own warp drive Enterprise. Well to all us astronauts at heart, that day may be coming sooner than later, now that China has released a video claiming not only to have a working EM drive, but also are claiming to have one already in space on their space laboratory ‘Tiangong-2’! Prior to this news of success from China, China was reported to have only been studying the EM drive, with no reports of successful functionality. Furthermore, both the UK and NASA have also been working on creating an EM drive, with a mixture of breakthroughs and problems. But before we get into the thick of things, let us have a quick review on some important information about the EM Drive.

The Electromagnetic drive (EM Drive), scientifically known as a radio frequency resonant cavity thruster, makes use of microwaves and particles that are bounced around inside an asymmetrical-shaped cavity, which produces thrust with an increasing momentum. Much like to if you were in a box, pushed on the side, and started to move with acceleration. What this means simply is that an EM drive creates thrust without the need for a propellant. Sadly, what an EM Drive isn’t is a warp drive as seen in Star Trek. Unlike how the EM Drive creates thrust, a warp drive appears to enable FTL travel through warping the fabric of space and time around a ship, allowing it to travel less distance.

Still, a working EM Drive would mean a whole bunch of good things for us, including a much faster way of travelling through space (just maybe not FTL Level). A fully functional EM drive would mean there would be no need for heavy propellants such as rocket fuel on board, and would result in a trip to mars only taking between 70-72 days, compared to the average of 270 days it takes us today. What’s even more impressive, is that according to NASA, with an EM drive it would only take us 92 years to travel to our nearest solar system! In addition to faster space travel, the EM drive would result in: cheaper space travel, solar power stations with cheap solar-harvesting satellites that could beam power back to earth, and generally provide us with a greener and convenient energy source for travel.

So, what are we waiting for!? Well before you go buy your space suits and tickets to China, there is a lot of discussion on whether China’s claims and experiments with the EM Drive are true. So far, all China has given us is a press conference announcement and a government sponsored Chinese newspaper (and China doesn’t have the best record of accomplishment for trustworthy research). Within the press conference they also claimed to need to do further experiments to try to increase the amount of thrust being produced. What we need is a peer-reviewed paper, which would not only provide conclusive evidence for their results with the EM Drive, but also confirm the reliability of their claims to testing it in space. China does have some stability to their claims however, with China claiming to have produced similar results to that of the work of NASA’s EM Drive experiments. NASA’s has been working equally as hard on the EM Drive, and have produced several models of EM Drives producing Thrust. They even finally managed to publish a peer review paper, with an EM Drive producing small amounts of Thrust within a vacuum. This gives a little backup to China’s claim of an EM Drive in space.

The biggest problem the EM Drive faces is that arguably its biggest contribution to science today is also its biggest problem and why many experts contest against it. The very physics of the EM Drive not requiring a propellant violates Newton’s third Law of Motion, “for every action there is an equal and opposite re-action”. So, on the one hand, where this would mean that the EM Drive would change the basis of how we understand physics, it also means that no one can explain how it works. Without this explanation, the consensus is that we can’t possibly use and sustain the EM Drive.

So, what happens now? Well we are going to have to wait to see if China releases that peer review paper, but even without that we have made a lot of development in our goal to space travel. The combined effort of China, NASA and other national institutions have brought the EM drive closer out of the theoretical, and into the possible. There has even been some theories created to explain how the EM Drive works, “quantised inertia” being responsible for creating this thrust. If true, this would mean that the EM Drive would not completely violate the conservation of motion, but adapt it. If you’re interested in the applications of “quantised inertia” to the EM Drive, then consider the works of Dr Mike McCullock. Furthermore, for those of you wanting that FTL warp drive, then there is some hope! NASA engineers have been reporting on forums that when they fired lasers into the EM Drive’s resonance chamber. The result was that some of the beams traveled faster than the speed of light. This suggests that the EM Drive may have the capacity to produce the needed “warp bubbles” for a warp drive! Nasa has even been designing a warp drive ship if you want to check that out to! Now, I’m off to watch some Star Trek, but keep an out for the announcement of a reality tv version!

Comments


Join our mailing list

Never miss an article!

bottom of page